翻訳と辞書
Words near each other
・ Formate dehydrogenase (acceptor)
・ Formate dehydrogenase (cytochrome)
・ Formate dehydrogenase (cytochrome-c-553)
・ Formate dehydrogenase (NADP+)
・ Formate dehydrogenase-N
・ Formate kinase
・ Formate-nitrite transporter
・ Formateur
・ Formate–tetrahydrofolate ligase
・ Formate—dihydrofolate ligase
・ FormatFactory
・ Formation
・ Formation (American football)
・ Formation (association football)
・ Formation (Catholic)
Formation (group theory)
・ Formation 8
・ Formation and evolution of the Solar System
・ Formation Armed F
・ Formation dance
・ Formation evaluation
・ Formation evaluation gamma ray
・ Formation evaluation neutron porosity
・ Formation finish
・ Formation fluid
・ Formation flying
・ Formation matrix
・ Formation of rocks
・ Formation of the Eastern Bloc
・ Formation patch


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Formation (group theory) : ウィキペディア英語版
Formation (group theory)
In mathematical group theory, a formation is a class of groups closed under taking images and such that if ''G''/''M'' and ''G''/''N'' are in the formation then so is ''G''/''M''∩''N''. introduced formations to unify the theory of Hall subgroups and Carter subgroups of finite solvable groups.
Some examples of formations are the formation of ''p''-groups for a prime ''p'', the formation of π-groups for a set of primes π, and the formation of nilpotent groups.
==Special cases==
A Melnikov formation is closed under taking quotients, normal subgroups and group extensions. Thus a Melnikov formation ''M'' has the property that for every short exact sequence
:1 \rightarrow A \rightarrow B \rightarrow C \rightarrow 1\
''A'' and ''C'' are in ''M'' if and only if ''B'' is in ''M''.〔Fried & Jarden (2004) p.344〕
A full formation is a Melnikov formation which is also closed under taking subgroups.〔
An almost full formation is one which is closed under quotients, direct products and subgroups, but not necessarily extensions. The families of finite Abelian groups and finite nilpotent groups are almost full, but neither full nor Melnikov.〔Fried & Jarden (2004) p.542〕

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Formation (group theory)」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.